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The speed oscillation energy of a platoon:

Eq($4(5)) = Zioe" = Zio [ fo +00Vi2(ia))da)]

Derive V;(jw) for all vehicles using the leading vehicle trajectory oscillation
Xo(jw) information (obtained through V2I communications)

Vi(jw) = 21mjdSSx i (jw, £4(8) )Xy )

Performance table of degeneration scenarios for the fully-activated IFT;

Traverse all possible degeneration scenarios, and add the corresponding
control performances from the table generated in the first step with a weight
formulated from the communication model to obtain the expected string
stability of the IFT candidate.

X;(jw)
Xo(jw)

SSx,i(jw, §4(8)) =

N N + oo
Ed(fd(f)) — Zi=0Vi2 (jw)dw = 4m? zizofo wZSS)z(,i(fw; fd(st))Xg (Jw)dw

Probabilities of Degeneration Scenarios -- P;($4(£)) :

In literature, a communication model with saturated and unsaturated
communication traffic is developed using a Markov chain.

pi,unsat (E) a [kl log(ﬁi (f)) + kz CW + k3]pi,sat (f)
p; (&) : CAV density around Vehicle |

CW : Contention window (communication parameter)

The probability of the degeneration from & to §; is

Py (Ed (E)) — 1_[ Pi unsat 1_[ (1 - pi,unsat)
i€Aq(&) i€EB4($)

Optimization model:
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OPT-II '

N oL
I%}Ei.(lll 4m? Z l Piunsat Z (1- pi,unsat)z l (UZSS§('iOw, é’d(f))x(‘)z(]w)d(’)
£a(9)EQ4(D) | i€A4(D) i€B4(3) i=1"°
5.t §=Mony, -.,nnl,n; €1{0,1}fori =01, ...,N
Q= {[no 0y, -, nnlIn; €1{0,1} fori = 0,1, ..., N}
=)

Ea(®) = |noaNia - Mnal miqa € 0,14 m;q < nyfori =0,1,...,N
Qa(®) = {[n0.a 11,4, Mnal| | 110 €10, 1}, n;9 < mifori =01, ..., N}
2za@eaq@) Pa(§q) = 1, forany & € Q

Ag($q(S)) = {iln; = 1, Nig = 1,1=0, .., N}

Ba($a($)) ={ilmi=11m4=0,i=0,..,N}

Two-step algorithm:

A fully-activated IFT includes all possible degeneration scenarios of other IFTs.
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5. Numerical Experiment

Experiment setups:

The experiment setup consists of a N+| CAV platoon with one leading
vehicle (i=0) and N following vehicles (i=1,...,N,and N=11,...,15).

The movement of the leading vehicle is predetermined according to NGSIM
field data.

Objectives:

Test the optimization result under different V2V communication scenarios.
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CACC-OIFT: CACC includes the IFT optimization

CACC-FIFT: control strategy includes the CACC and ACC schemes
(Naus et.al, 2010) without IFT optimization

The optimization result under different V2V communication scenarios:

The table illustrates the optimal IFTs under different ambient traffic
densities k and platoon size N.

Consecutive vehicles with activated “send’ functionalities.

Consecutive vehicles with deactivated
following those with activated ones.

“send” functionalities directly

N=14 Optimal IFT k=25 Optimal IFT

k=25 [11100011100000 N=I11 111100011100

k=30 [11100001110000 N=12 1111000111000

k=35 111100000111000 N=13 [1110001110000

k=40 [11100000011100 N=14 111100011100000
N=15 1111000111000100

Performance comparison between CACC-OIFT and CACC-DIFT
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CACC-FIFT

1.5

tracking error

tracking error

speed

To compare the performance of CACC-OIFT with those of CACC-FIFT, a
|5-CAV platoon is analyzed in a traffic flow with average density 28.57
vehicle/km for 240s. Under CACC-OIFT, the vehicle platoon will follow
the IFT from the optimization model (11110001 1100000).

Fig. (a) and (b) illustrates that the spacing tracking error of vehicles is

mitigated based on their positions in the platoon. The figure shows that
CACC-OIFT outperforms CACC-FIFT.

The standard deviation of spacing tracking error decreases sequentially
across vehicles in the platoon for both controllers. However, the spacing
error of CACC-OIFT reduces the more quickly.

The fluctuation in standard deviation of speed decreases under all three
schemes as the tail of the platoon is approached, which implies that traffic
oscillations are damped.
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6. Summary

This study proposes a novel CACC strategy, CACC-OIFT, to explicitly factor IFT
dynamics and to leverage it to enhance the platoon performance in an unreliable
V2V communication context for a pure CAV platoon.

Contributions:

The IFT optimization model determines the optimal IFT that dynamically
activates and deactivates the “send” functionality of the V2V communication
devices of all vehicles in platoon.

The degeneration scenario probabilities are determined based on the
communication failure probabilities for that time period which depend on
the ambient traffic conditions.

The speed oscillation energy in frequency domain is used to evaluate the
platoon control performance for a given IFT degeneration scenario.

In the operational deployment context, the adaptive controller continuously
determines the car-following behaviors of the vehicles in the platoon.




